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Abstract

We analyze the popular push-pull protocol for spreading
a rumor in networks. Initially, a single node knows of
a rumor. In each succeeding round, every node chooses
a random neighbor, and the two nodes share the rumor
if one of them is already aware of it. We present the
first theoretical analysis of this protocol on random
graphs that have a power law degree distribution with
an arbitrary exponent β > 2.

Our main findings reveal a striking dichotomy in
the performance of the protocol that depends on the
exponent of the power law. More specifically, we show
that if 2 < β < 3, then the rumor spreads to almost
all nodes in Θ(log log n) rounds with high probability.
On the other hand, if β > 3, then Ω(log n) rounds are
necessary.

We also investigate the asynchronous version of the
push-pull protocol, where the nodes do not operate
in rounds, but exchange information according to a
Poisson process with rate 1. Surprisingly, we are able
to show that, if 2 < β < 3, the rumor spreads even in
constant time, which is much smaller than the typical
distance of two nodes. To the best of our knowledge,
this is the first result that establishes a gap between the
synchronous and the asynchronous protocol.

1 Introduction

Current estimates [1] reveal that roughly two billion
people are using every day the Internet and its numer-
ous services, like E-mail, the World Wide Web, and so-
cial networks. Especially social networks provide new
and easily accessible ways for interaction and commu-
nication among individuals, thus making the Internet
an ideal environment for the spread of all kinds of in-
formation. The dynamics of such information spread-
ing processes constitute an important topic not only in
computer science, but in several other disciplines, like

∗School of Mathematics, University of Birmingham, Edgbas-
ton B15 2TT, United Kingdom. This author was supported by a
Marie Curie Intra-European Research Fellowship PIEF-GA-2009-

255115 held at the Max Planck Institute for Informatics.
†Max Planck Institute for Informatics, 66123 Saarbrücken,

Germany.
‡Max Planck Institute for Informatics, 66123 Saarbrücken,

Germany.

economics and sociology, as well. In the present work,
we address the fundamental question about whether and
how the structure of certain models for real-world net-
works impacts the spread of information.

Empirical observations confirm that information
disseminates very fast, especially in the occurrence of
extraordinary or unexpected events, like earthquakes,
plane crashes, or other emergencies originating from
natural or human activities. Using extensive phone call
records, Bagrow et al. [2] and Candia et al. [5] discovered
that such exceptional events trigger enormous commu-
nication spikes all over the world, thus enabling a rapid
propagation of the news. Modern media like Facebook
and Twitter are further propelling this development.

The focus of this work is to perform a thorough
analysis of the popular phone-call or push-pull protocol
of Demers et al. [13] (see also Karp et al. [21]). Sup-
pose that we are given a graph whose nodes represent
individual entities, and each edge stands for some kind
of interaction between them. Initially, there is a sin-
gle node that knows of a rumor. The protocol then
proceeds in rounds. In each such round, every node
chooses a random neighbor and the two nodes share the
rumor, if at least one of them is aware of it. We also
study a natural asynchronous version of this protocol,
see e.g. [4, 23], where each node repeatedly contacts a
randomly chosen neighbor following a Poisson Process
(i.e., the waiting times between two consecutive contacts
are exponentially distributed with mean 1).

Let us now turn our attention to the graph models
that we are going to use. There is a considerable amount
of experimental research devoted to the study of prop-
erties of real-world networks. More than a decade ago,
Faloutsos et al. [17] observed that the Internet exhibits a
so-called scale-free nature: the degree sequence follows
a power law distribution, which means that the propor-
tion of vertices of degree k scales like k−β , for all suffi-
ciently large k, and some β > 2. This result came back
then as a surprise to the networking community, and
stirred significant interest in exploring the causes of this
phenomenon. However, power laws have been observed
in several other disciplines as well. Examples include ci-
tations in the academic literature, frequencies of words
in languages, the degree sequences of several social net-
works, populations of cities, frequencies of names, . . . ,
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and literally hundreds of other domains; we refer the
reader to the excellent surveys by Newman [24] and
Mitzenmacher [22], which contain a far more exhaus-
tive list and many references to the relevant literature.
Moreover, most of the studied networks, and in partic-
ular the social and technological ones, are observed to
have 2 < β < 3, implying that the second-order average
degree is significantly larger than the average degree.

In this paper we present the first theoretical anal-
ysis of the performance of both the synchronous and
asynchronous push-pull protocol on a random graph
model that has a power law degree distribution with
arbitrary exponent β > 2, and which have been pro-
posed as models for real-world networks. We are inter-
ested in the number of rounds/the time that is needed
until almost all nodes have received the rumor. More
specifically, for any ε > 0, we are interested in bounds
that hold with high probability, and within which the
protocol spreads the information to a (1− ε)-fraction of
the nodes. This approach is somehow different from the
classical settings, where typically it is required that all
nodes become informed. However, this does not limit
the applicability of our results: it is well-known that
in real-world networks there exist “outliers”, i.e., nodes
which are connected only by very long paths to the re-
maining graph. The observed fraction of such outliers
is measured to be typically at around 5 - 10% of the to-
tal number of nodes, see the recent paper [20] by Kang
et al., and references therein. Hence, if we want to in-
form all nodes, then the time needed will unavoidably
be dominated only by a small fraction of them.

Our Results The family of random graphs that
we consider is asymptotically equivalent to a model de-
scribed by Chung and Lu [11], who introduced it as
a general purpose model for generating graphs with a
power law degree sequence. Consider the vertex set
[n] := {1, . . . , n}. Every vertex v ∈ [n] is assigned a
positive weight wv, and the edge uv is included inde-
pendently in the graph with probability proportional
to wuwv. Note that the expected degree of v is close
to wv. With high probability the degree sequence of the
resulting graph follows a power law, provided that the
sequence of weights follows a power law (see [29] for a
detailed discussion). When the resulting random graph
has a power law degree sequence with exponent β, we
say that the sequence of weights (w1, . . . , wn) is power
law type β (see Definition 2.2).

Chung and Lu [10] proved that with high probabil-
ity such a graph has a giant connected component that
contains a linear fraction of the nodes, whereas every
other component only contains O(log n) nodes. Last but
not least, such graphs are typically ultra-small worlds,
i.e., the average distance of any two nodes is small,

namely of order O(log log n) [11, 14]. Let CL(w(n)) =
CL(w1, . . . , wn) be a graph drawn from this distribu-
tion. We show the following result, which establishes
that the synchronous push-pull algorithm is extremely
fast in the range 2 < β < 3.

Theorem 1.1. Let ε > 0. Let G = CL(w1, . . . , wn),
where the wi’s follow a power law distribution with
exponent β. Assume that initially the rumor is located
on a vertex of the giant component of G that is chosen
uniformly at random. There is a positive integer n0 =
n0(ε, β) such that for any n > n0, with probability at
least 1− ε, the following hold.

(i) If 2 < β < 3, then there is a c = c(β) > 0 such that
after at most c log log n rounds of the synchronous
protocol all except of at most εn nodes in the largest
component of G have received the rumor;

(ii) If β > 3, then the synchronous protocol needs
Ω(log n) rounds to spread the rumor to more than
εn nodes.

We want to remark that the constant c depends only
on β and not on ε. The above theorem is best
possible for 2 < β < 3. Indeed, the distance of two
randomly selected vertices is with high probability at
least 2

| log(β−2)| log log n; see [14]. So, a successful spread
of the rumor to almost all vertices cannot be achieved
in a smaller number of rounds. Moreover, a spread to
all vertices is lower bounded by Ω(log n), which is the
diameter of a Chung-Lu graph for any β > 2; see [11].
We also show the following result for the asynchronous
protocol, which says that the rumor spreads in constant
time.

Theorem 1.2. Let G = CL(w1, . . . , wn), where
the wi’s follow a power law distribution with expo-
nent β, where 2 < β < 3, and let ε > 0. There is a
T = T (ε, β) > 0 and a positive integer n0 = n0(ε, β)
such that for any n > n0, with probability at least 1− ε,
after T rounds of the asynchronous protocol all but εn
nodes of the largest component of G will have received
the rumor.

Related work There is a huge amount of litera-
ture devoted to the study of several variations of the
push-pull protocol on many classes of (random) graphs,
and in particular, on models of social networks. We fo-
cus here only on the work that relates directly to our
results. Giakkoupis [18], improving upon previous work
by Chierichetti, Lattanzi, and Panconesi [8, 9], showed
that the algorithm distributes a rumor to all nodes of
a connected graph G in O(φ−1 log n) rounds with high
probability, where n is the number of nodes, and φ is
the conductance of G. The conductance is a standard

1643 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.



measure of the expansion properties of a given graph.
There are also further studies that connect related ex-
pansion parameters to the runtime of rumor spreading,
e.g., [4, 6, 23], however, all these upper bounds are at
least logarithmic in n.

Regarding the performance of the push-pull proto-
col on the preferential attachment model, where β = 3,
Doerr, Fouz, and Friedrich [15] showed that it dissemi-
nates the information to all nodes of the classical pref-
erential attachment random graph in Θ(log n) rounds.
The best previously known bound was obtained by
Chierichetti et al. [7], and was of order log2 n. More-
over, by considering a push-pull strategy with mem-
ory, where each node never contacts a neighbor twice
in a row, the authors of [15] showed that the rumor
propagates to all nodes in time Θ( logn

log logn ). This was
the first time that a sublogaritmic bound for the per-
formance of a variation of the push-pull protocol was
shown. Moreover, Elsässer [16] studied a variant of the
push-pull protocol on Chung-Lu random graphs with a
power law degree distribution and at least logarithmic
minimum degree. The author shows that the algorithm
completes the broadcast in O(log n) rounds and uses
only o(n log n) messages.

Apart from the classical synchronous protocols,
their asynchronous counterparts have also been stud-
ied [4, 19, 23]. For regular graphs, it was shown in [26]
that several synchronous and asynchronous models have
asymptotically the same running time. In particular, it
follows from these result that for any regular graph, the
running time of the synchronous push-pull protocol is
asymptotically bounded from above by the running time
of its asynchronous version. Our analysis demonstrates
that this is not the case for the class of (non-regular)
random graphs we consider.

Proof outline A central tool in our proof is the
so-called efficient connector. An efficient connector is
a vertex of bounded degree such that, once one of its
neighbors has received the rumor, it pulls the rumor and
pushes to all other neighbors in a very short time. This
notion gives rise to an auxiliary graph H containing an
edge joining two vertices x and y, if there is an efficient
connector which is incident to both of them. If H has
diameter D, then any rumor in H will spread to all
vertices in O(D) rounds. The key point in our analysis
is that this graph turns out to be essentially distributed
as a (smaller) Chung-Lu random graph. This allows
us to use known results about typical distances in such
random graphs in the proof regarding the performance
of the synchronous protocol.

More importantly, if we restrict H to vertices
with weight larger than w, then its density increases
polynomially in w. This allows us to be much more

demanding regarding the “efficiency” of a connector. In
particular, when considering the asynchronous protocol,
we may require that the rumor is spread to all neighbors
in time O(1/D). This implies that the rumor is spread
over H in constant time. To pass the rumor efficiently
to H, we use the property that when 2 < β < 3 the
neighborhood of most vertices grows superexponentially
– this is not the case when β > 3. This allows us to
adjust the efficiency of the connectors in such a way
that the rumor reaches H from most vertices in V in
constant time. An illustration of our proof is given in
Figure 1.

We will begin our analysis with the asynchronous
protocol. The reason is that the result for the syn-
chronous protocol will follow from this by, roughly
speaking, rounding up the “efficiency” of the connec-
tors to an integer by means of a proper coupling.

2 Random graph models and notation

The model of the random graphs, which will serve as
the underlying graph over which both protocols run,
is asymptotically equivalent to a model considered by
Chung and Lu [11], and is a special case of the so-called
inhomogeneous random graph, which was introduced
Söderberg [27] and was studied in great detail by
Bollobás, Janson and Riordan in [3].

We begin this section with a precise definition of
the considered models. In Section 2.2 we then collect
the relevant results about the degree sequence and the
average distances, that will be heavily used in the
subsequent sections.

2.1 Chung-Lu random graphs In order to de-
fine the model we consider for any n ∈ N the ver-
tex set [n] = {1, . . . , n}. Each vertex i is assigned
a positive weight wi(n), and we will write w(n) =
(w1(n), . . . , wn(n)). We assume in the remainder that
the weights are deterministic, and we will suppress a
possible dependence on n, whenever it is obvious from
the context. For any S ⊆ [n], set

WS(w) :=
∑
i∈S

wi.

In our random graph model, the event of including the
edge {i, j} in the resulting graph is independent of the
events of including all other edges, and equals

(2.1) pij(w) = min
{

wiwj
W[n](w)

, 1
}
.

This model was considered by Chung et al., who
studied in a series of papers [10–12], for fairly general
choices of w, several properties of the resulting graphs,
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such as the average path length or the distribution
of the component sizes. We will refer to this model
as the Chung-Lu model, and we shall write CL(w)
for a random graph in which each possible edge {i, j}
is included independently with probability as in (2.1).
Moreover, we will suppress the dependence on w, if it
is clear from the context to which sequence of weights
we refer to.

Note that in a Chung-Lu random graph, the weights
essentially control the expected degrees of the vertices.
Indeed, if we ignore the minimization in (2.1), and also
allow a loop at vertex i, then the expected degree of
that vertex is

∑n
j=1 wiwj/W[n] = wi. In the general

case, a similar asymptotic statement is true, unless the
weights fluctuate too much. Consequently, the choice
of w has a significant effect on the degree sequence of
the resulting graph. For example, the authors of [11]
choose wi = d

(
β−2
β−1

)
( n
i+i0

)1/(β−1), which typically
results in a graph with a power law degree sequence with
exponent β, average degree d, and maximum degree
proportional to (n/i0)1/(β−1), where i0 was chosen such
that this expression is O(n1/2). Our results will hold
in a more general setting, where larger fluctuations
around a “strict” power law are allowed, and also larger
maximum degrees are possible, thus allowing a greater
flexibility in the choice of the parameters.

In our analysis it will be very useful to consider a
slight variation of the above model. Suppose that
instead of (2.1) we create a multigraph by including Xij

edges that join i to j, where Xij is a Poisson random
variable with mean wiwj/W[n]. In other words, the
probability p′ij that i and j are connected by (at least)
one edge is given by the relation

(2.2) 1− p′ij = e−wiwj/W[n] .

This model was studied in [25] by Norros and Reittu,
who showed that it behaves similar to the Chung-Lu
model in terms of the distance between two randomly
chosen vertices. We shall denote a random graph drawn
from this distribution by NR(w).

2.2 Power law weight distributions Following
van der Hofstad [29], let us write for any n ∈ N and
any sequence w = (w1(n), . . . , wn(n)) of weights

Fn(x) = n−1
n∑
i=1

1[wi(n) 6 x],

where 1[wi(n) 6 x] is the indicator function which is
equal to 1 if and only if wi(n) 6 x. This is the empirical
distribution function of the weight of a randomly chosen

vertex. We will assume that Fn satisfies the following
two conditions.

Definition 2.1. We say that (Fn)n>1 is regular, if it
has the following two properties.

• [Weak convergence of weight] There is a distri-
bution function F : [0,∞)→ [0, 1] such that for all
x at which F is continuous limn→∞ Fn(x) = F (x).

• [Convergence of average weight] Let Wn be
a random variable with distribution function Fn,
and let WF be a random variable with distribution
function F . Then limn→∞ E [Wn] = E [WF ].

The regularity of (Fn)n>1 guarantees two important
properties. First, the weight of a random vertex is close
to the value of a given random variable. Moreover,
this variable has finite mean. Thus, as will be made
more precise in a few paragraphs, the resulting graph
has bounded average degree. Apart from regularity, our
focus will be on weight sequences that give rise to power-
law degree distributions.

Definition 2.2. We say that a regular se-
quence (Fn)n>1 is of power law type β, if there
are constants 0 < γ1 < γ2 and x0 > 0 as well as a
function (log log n)−1 � α(n) 6 1

β−1 such that for
all x0 6 x 6 nα(n)

γ1x
−β+1 6 1− Fn(x) 6 γ2x

−β+1,

and Fn(x) = 1, for x 6 x0, whereas Fn(x) = 0, for
x > nα(n). (Here and elsewhere the notation � means
“asymptotically smaller”.)

3 Analysis of the protocols

In this section we perform our analysis for Chung-Lu
random graphs CL(w). Recall that an illustration of
this analysis is given in Figure 1. We will assume in
the remainder that the empirical distribution (Fn)n>1

of (w(n))n>1 is of power law type β, cf. Definition 2.2,
where 2 < β < 3. We start with the analysis of
the asynchronous protocol. All lemmas whose proof is
omitted here are proved in Section 6.

3.1 The asynchronous protocol – Proof of The-
orem 1.2 To avoid ambiguities, we denote by ΩG the
probability space for the graph and by ΩRS the prob-
ability space for the rumor spreading protocol. For
the analysis, we will use the following equivalent de-
scription of the asynchronous protocol. For every ver-
tex u ∈ V , we have an independent Poisson Pro-
cesses PP(u) over the non-negative reals [28], and an
infinite list (Lt(u))t∈N of randomly chosen neighbors. If
the vertex u or a neighbor of u is informed at time 0,
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S2 S̃2
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S̃imax

X0

X1

X2

X3

Ximax

weight efficiency

u

X

V \ (X ∪ S0 ∪ . . . ∪ Simax)

Figure 1: Illustration of the way a rumor initiated at u
is conveyed to the kernel S0. The weights of the sets
Simax , Simax−1, . . . , S0 are super-exponentially increas-
ing, starting with a (large) constant weight in Simax .
The sets Ximax , Ximax−1, . . . , X0 ⊆ X are all vertices
of constant weight and degree, but their efficiency in-
creases exponentially (starting with a constant efficiency
in Ximax). Every vertex in S̃i is connected to a vertex
in S̃i−1 via a vertex in Xi. The dotted edges within S0

represent the edges of the graph H.

then u follows PP(u), i.e., when the process PP(u)
ticks for the k-th time, it exchanges a rumor with neigh-
bor Lk(u) (if any of the two nodes knows the rumor).
However, if u and its neighbors are uninformed, then
we may assume that u does nothing (note that in the
original definition of the process, u would communicate
with randomly chosen neighbors; this has no effect, since
the waiting times are exponentially distributed and thus
memoryless). Now suppose that at time τ(u) ∈ R, the
first neighbor of u becomes informed. Then u starts to
follow the Poisson process PP(u), i.e., when the pro-
cess PP(u) ticks for the k-th time at time tk, u commu-
nicates with neighbor Lk(u) at time τ(u) + tk. Here we
implicitly assume that there is some oracle that tells u
at the right time to start using the Poisson process. In
other words, we make a “thought experiment” about
the behavior of the vertices, which, however, does not
affect the execution of the protocol at all.

In the following, we now describe a way how every
node u generates the list (Lk(u))k∈N. For the k-th
element, node u generates a uniformly random number
in Uk(u) ∈ [0, 1]. Hence, each node u generates an
infinite list of uniform random numbers (Uk(u))k∈N
in [0, 1] and we may assume that the node does so

before the graph is exposed. Now if we expose the
neighborhood of u with neighbors labeled and ordered
from 1 to deg(u), then u generates the list (Lk(u))k∈N
where for each k ∈ N

Lk(u) is set to be that j ∈ [deg(u)] such that

Uk(u) ∈
[
j − 1

deg(u)
,

j

deg(u)

)
.

This two-stage procedure for generating the lists turns
out to be handy, as we may say something about how
fast the rumor will be spread by u to its neighbors just
by looking at the sequence (Uk(u))k>1 without exposing
any edge in G.

Definition 3.1. Let d be any integer and ρ ∈ R. Then
we call a node u ∈ V a (ρ, d)-efficient asynchronous
connector, if the following two conditions hold:

• For all integers 1 6 k 6 2d, Uk(u) ∈
[
k−1
2d ,

k
2d

)
and for all integers 2d < k 6 4d, Uk(u) ∈[
k−2d−1

2d , k−2d
2d

)
.

• The clock of PP(u) ticks at least 4d times within
the interval [0, ρ).

Let us now explain this definition. Suppose that
u is a (ρ, d)-efficient asynchronous connector, and addi-
tionally, the degree of u is not larger than d. Then if
at time τ(u) the first neighbor of u becomes informed,
then all neighbors of u and u itself are informed by time
τ(u) + ρ. Note that Definition 3.1 uses only the prob-
ability space ΩRS . We use the following simple lower
bounds on the probability that a vertex u is an efficient
connector.

Lemma 3.1. Let ρ ∈ R+ and d ∈ N. Then,

Pr [u is a (ρ, d)-efficient asynchronous connector ]

>
( ρ

16d2

)4d

.

Having defined the notion of an efficient connector,
we are now ready to formulate the general proof strat-
egy. Additionally, with some small modifications, we
can also obtain the result for the synchronous algorithm
(see Section 3.2).

First, we define a kernel which contains all nodes
with sufficiently large weight. More precisely, we set
T0 := (log n)A, where A = 3(3− β)−2. Then the kernel
is the set of vertices with weight at least T0, i.e.,

S0 := {v ∈ V : wv > T0} .

Also, let X be the set of εn nodes with smallest weight,
where we assume that ε ∈ (0, 1

2 ). Note that for any x
in X

(3.3) γ
1/(β−1)
1 6 wx 6 (2γ2)1/(β−1)

.
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Indeed, the assumption that Fn is of power law type
β (cf. Definition 2.2) implies that Fn(γ1/(β−1)

1 ) 6 1 −
γ1(γ1/(β−1)

1 )−β+1 = 0. This shows the lower bound on
wx. To see the upper bound, a similar calculation shows
that Fn

(
(2γ2)1/(β−1)

)
> 1

2 > ε. We shall also write

wmin = γ
1/(β−1)
1 . Our first goal is to show that there

are many efficient connectors that have two neighbors
in S0. To this end, we prove the following lemma.

Lemma 3.2. Let ε ∈ (0, 1
2 ). Set α = 2(β − 2)/(β −

1) ∈ (0, 1) and λ = dlog1/α log(T0)e. Then there is
a c = c(α, ε) > 0 so that with probability 1 − o(1),
there exist disjoint sets X0, X1, . . . , Xλ ⊆ X with the
following properties:

• each node in Xi, 0 6 i 6 λ, is not adjacent to any
other node in X,

• for each 0 6 i 6 λ, |Xi| > c · α8(λ−i) · n,

• for each u ∈ Xi, 0 6 i 6 λ, u is an (αλ−i, 2)-
efficient asynchronous connector.

For the proof that the rumor is quickly disseminated
within the kernel, we only use the connectors in X0

that have degree 2 (we shall use the other connectors in
X1, . . . , Xλ later in the analysis). We are going to prove
that there are sufficiently many efficient connectors in
the set X0 that connect two vertices in S0. To this
end, we define an auxiliary graph H = (VH , EH) with
VH = S0 and

EH := {{x, y} | x, y ∈ VH ∃v ∈ X0 :
v is a ((log T0)−1, 2)-e. c. with N(v) = {x, y}},

where e. c. stands for efficient asynchronous connector.
The next lemma proves that the diameter of H is
O(log log n). Thus, because of the fact that (log T0)−1 =
Θ((log log n)−1), as soon as any one of the nodes in VH
learns the rumor, then after an additional time of O(1)
all other nodes will know it as well.

Lemma 3.3. With probability at least 1− o(1), all pairs
of vertices in H are connected by a path of length at
most 2+o(1)

| log(β−2)| log log n.

It remains to prove the existence of efficient paths from
most vertices V \ S0 to the set S0. To this end, we
partition V (G) according to the weight of the vertices.
First, we define a sequence of thresholds (Ti)i>1. Recall
the definition of S0, where we set T0 = (log n)A.
Let Ti := Tα

i

0 , where α = 2(β − 2)/(β − 1) ∈
(0, 1). Moreover, for any integer i with 1 6 i 6
dlog1/α log T0e =: λ, we set

Si = {v ∈ V : Ti 6 wv < Ti−1} ,

where T−1 :=∞. The task of connecting most vertices
in V to S0 is performed by the following two lemmas.

Lemma 3.4. Let ε ∈ (0, 1
2 ) and set α = 2(β − 2)/(β −

1) ∈ (0, 1). Then there exists κ = κ(ε) > 0 so that
with probability at least 1− ε, there exists a sequence of
subsets S̃i ⊆ Si, 1 6 i 6 imax = λ− κ, that satisfies the
following properties:

• |S̃i| > |Si|/2,

• each vertex u ∈ S̃i is connected to S̃i−1 by a
vertex x ∈ Xi, which is an (αλ−i, 2)-efficient
asynchronous connector and satisfies deg(x) = 2,
where S̃0 = S0 = VH .

The final step is to prove that there is an efficient
path from most vertices in the giant component to the
set ∪imax

i=0 S̃i from Lemma 3.4, which is the subject of the
next lemma.

Lemma 3.5. Let ε ∈ (0, 1
2 ) and let S̃ = ∪imax

i=0 S̃i be
sequence of sets from Lemma 3.4. Then there are
positive integers r = r(ε) and ∆ = ∆(ε) so that with
probability at least 1 − ε, all but an ε fraction of the
vertices of the giant component of CL(w) are such that
for each of these vertices u there is a path P = (u1 =
u, u2, . . . , ur) with ur ∈ S̃ which does not use vertices
in X, and the degrees of all vertices on that path except
for ur are upper bounded by ∆.

Proof of Theorem 1.2 Let us now prove the
upper bound of O(1) on the rumor spreading time. By
combining Lemma 3.3, Lemma 3.4 and Lemma 3.5, we
conclude that there is, for all pairs u, v in the giant
component except for at most εn2 pairs, a path Pu,v =
(u1 = u, u2, . . . , u` = v) with the following properties:

• ` = c̃ log log n, where c̃ > 0 is some constant;

• there are constants c1, c2 6 r, such that all the de-
grees of u1, . . . , uc1 and the degrees of u`−c2 , . . . , u`
are bounded by some constant ∆ > 0;

• for the subpath P̃u,v = (uc1+1, . . . , u`−c2−1), there
is an index set I ⊆ {c1 + 1, . . . , `− c2 − 1} associ-
ated with values ∆i for each i ∈ I, so that

– I contains at least every second vertex on
P̃u,v;

– for every i ∈ I, ui is a (∆i, 2)-efficient asyn-
chronous connector and deg(ui) = 2;

–
∑
i∈I ∆i = O(1).

Note that once the rumor reaches the vertex uc1+1,
we know that it will reach the vertex u`−c2−1 in time

1647 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.



∑
i∈I ∆i = O(1), using the definition of (∆i, 2)-efficient

asynchronous connector along with deg(ui) = 2 for
i ∈ I. Hence, it only remains to bound the time for
the rumor to go from u1 = u to uc1 , and from u`−c2
to u` = v. The expected time for w to transmit the
rumor to its neighbor on Pu,v can upper bounded by ∆.
Hence, the expected time for the rumor to traverse the
whole path Pu,v is at most

∆ · (c1 + c2) +
∑
i∈I

∆i,

which is a constant. Using Markov’s inequality com-
pletes the proof.

3.2 The synchronous protocol – Proof of The-
orem 1.1(i) We first adjust the definition of efficient
connector to the synchronous model.

Definition 3.2. Let d and ρ > 4d be integers. We call
a node u ∈ V a (ρ, d)-efficient synchronous connector if
the following condition holds:

• for each 1 6 j 6 d, we have

bρ/2c⋃
t=1

Ut(u) ∩
[
j − 1

2d
,
j

2d

)
6= ∅

and
ρ⋃

t=bρ/2c+1

Ut(u) ∩
[
j − 1

2d
,
j

2d

)
6= ∅.

Hence, if a node u is a (ρ, d)-efficient connector and
its degree is at most d, then once the first neighbor of u
becomes informed at step τ(u), then all other neighbors
of u (and u itself) will have been informed by step
τ(u) + ρ. Let us also observe that, for any d, we can
make the probability for a node u to be a (ρ, d)-efficient
synchronous connector arbitrarily close to 1 by choosing
a sufficiently large ρ = ρ(d).

Recall that all vertices in X that are used in
Lemma 3.3 and Lemma 3.4 as connectors in S̃ and H,
are (1, d)-efficient asynchronous connectors. Moreover,
the probability for being a (1, d)-efficient asynchronous
connector is smaller than the probability for being a
(ρ, d)-efficient synchronous connector, if we choose ρ >
1 to be a sufficiently large constant. Hence we can
set up a coupling between the asynchronous and the
synchronous model such that whenever a vertex u ∈ V
is a (1, d)-efficient asynchronous connector, then it will
be also a (ρ, d)-efficient synchronous connector. Hence,
corresponding to Section 3.1, we have the following.
There is, for all pairs u, v in the giant component except
for at most εn2 pairs, a path Pu,v = (u1 = u, u2, . . . , u`)
with the following properties:

• ` = c̃ log log n + 2f(ε), where c̃ > 0 is a constant
and f(ε) is a function that only depends on ε,

• there are c1, c2 6 f(ε), such that all the degrees
of u1, . . . , uc1 and the degrees of u`−c2 , . . . , u` are
bounded by some constant C = C(ε) > 0,

• for the subpath P̃u,v = (uc1+1, . . . , u`−c2−1), there
is an index set I ⊆ {c1 + 1, . . . , `− c2 − 1} associ-
ated with values ∆i for each i ∈ I, so that

– I contains at least every second vertex on
P̃u,v,

– for every i ∈ I, ui is a (ρ, 2)-efficient syn-
chronous connector and deg(ui) = 2,

Using exactly the same arguments as in Section 3.1,
we obtain that the expected time for the rumor to reach
v from u is at most

(c̃ log log n+ 2f(ε)) · ρ+ 2f(ε) · C.

This completes the proof of Theorem 1.1(i).

4 Typical properties of Chung-Lu random
graphs

The next paragraphs discuss the most relevant proper-
ties of the Chung-Lu model, namely its typical degree
sequence and the average distance of two randomly cho-
sen vertices.

The degree sequence Let us first turn our at-
tention to the degree sequence of a Chung-Lu random
graph. Note that the weight of a random vertex is given
by Wn, which is a random variable with distribution Fn.
Moreover, a simple calculation shows that the degree of
the vertex with weight wi follows approximately a Pois-
son distribution with mean wi. Consequently, we expect
that the probability that a random vertex has degree k is
close to e−WnW k

n/k!. The next theorem, which is taken
from [3, 29], confirms this intuition and characterizes
the degree distribution of a random graph CL(w(n))
for large n.

Theorem 4.1. Suppose that (Fn)n>1 is of power law
type β, for some β > 2. Then, for any k > 0, with high
probability,

Nk = (1 + o(1))pkn, where pk = E
[
e−WF

W k
F

k!

]
.

Moreover, there are constants 0 < γ′1 < γ′2 such
that γ′1k

−β+1 6
∑
i>k pi 6 γ′2k

−β+1.

In other words, if (Fn)n>1 is of power law type β, then
also the resulting random graph has a power law degree
distribution with exponent β. We want to remark that
a similar statement is true for the Norros-Reittu NR(w)
model; we omit the details.
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Typical distances Perhaps the most crucial pa-
rameter in our proofs about the Chung-Lu model is
the typical distance of two random nodes. The follow-
ing theorem follows straightforwardly from the results
in [11, 14, 29], and covers the case 2 < β < 3.

Theorem 4.2. Suppose that (Fn)n>1 is of power law
type β, for some 2 < β < 3. Let Dn be the distance of
two randomly chosen vertices in CL(w(n)). Then, with
high probability, if Dn <∞,

Dn =
(

2
| log(β − 2)|

+ o(1)
)

log log n.

In other words, if the parameters are chosen such that
the resulting graph has a power law degree distribution
with exponent in (2, 3), then the resulting graphs are
ultra-small, in the sense that most pairs of nodes are
at distance O(log log n). The next result, also taken
from [11, 29], states that the situation is dramatically
different if the exponent is larger.

Theorem 4.3. Suppose that (Fn)n>1 is of power law
type β, for some β > 3. Let Dn be the distance of
two randomly chosen modes in CL(w(n)). Then, for
sufficiently large n, with probability at least 1 − n−1/2,
if Dn <∞,

Dn >
1
3

logν n, where ν =
E
[
W 2
F

]
E [WF ]2

> 1.

The same results are again also true for the Norros-
Reittu NR(w) model.

The following lemma bounds the total weight of
certain subsets of vertices, in the case where the weights
follow a power law of type β ∈ (2, 3) – it will be used
many times in our proofs.

Lemma 4.1. Let (Fn)n>1 be of power law type 2 < β <
3. Then, uniformly for 0 < x 6 1

2n
α(n)∑

v : wv6x

wv = W[n] −Θ(nx−β+2)

and for x 6 nα(n)
∑

v : wv6x

w2
v = Θ(nx3−β).

Proof. We begin with the basic relation

1
n

∑
v : wv6x

wv =
∫ x

0

Pr[y 6 Wn 6 x]dy

=
∫ x

0

(1− Fn(y))− (1− Fn(x))dy.

(4.4)

To estimate the above expression, note that the assump-
tion that (Fn)n>1 is of power law type β > 2 implies∫ nα(n)

x

(1−Fn(y))dy = Θ(1)·
∫ ∞
x

y−β+1dy = Θ(x−β+2).

By putting (4.4) and the above estimate together we
obtain that∑
v : wv6x

wv = nE [Wn]− nΘ(x−β+2)− x(1− Fn(x))

= nE [Wn]− nΘ(x−β+2).

This proves the first claim. To see the second claim,
observe that∑

v : wv6x

w2
v = 2n

∫ x

0

yPr[y 6 Wn 6 x]dy.

A similar computation as above gives then the desired
statement – the details are omitted.

5 Lower bounds – Proof of Theorem 1.1(ii)

Lemma 5.1. Consider the Chung-Lu random graph
CL(w(n)), where the empirical distribution function
Fn(x) is of power law type β > 3. Then there is a con-
stant γ > 0 such that after γ log n rounds the number of
nodes informed by the synchronous push-pull algorithm
is o(n) with probability that is asymptotically bounded
away from 0.

Proof. The lemma follows from Theorem 4.3. To see
this, note that the conclusion of Theorem 4.3 implies
that there are at most n3/2 pairs of nodes in CL(w) with
distance at most 1

3 logν n. This however, guarantees
that there are at most, say, n3/4 nodes such that the
number of nodes within distance 1

3 logν n is at least n3/4.
This shows the claimed statement.

6 Completing the proof of Theorems 1.1
and 1.2

In this final section we collect all proofs omitted in
Section 3.

6.1 Proof of Lemma 3.1 Recall that the definition
of efficient asynchronous connector consists of two con-
ditions, which are by construction independent events.
Let us start with a lower bound for the probability for
the first condition. Since for the kth clock tick, node u
generates a uniform random variable Uk(u) ∈ [0, 1), we
find that the probability that u satisfies the first con-
dition is at least (2d)−4d. For the second condition, let
us estimate the probability that within the time-interval
[0, 0+ρ), the Poisson clock ticks at least 4d times. Since
the waiting time between two ticks is exponentially dis-
tributed with mean 1, we can lower bound this proba-
bility by (

1− e−τ/(4d)
)4d

>
( τ

8d

)4d

,(6.5)
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since 1 − e−x > x/2 for x ∈ (0, 1). Combining the
two lower bounds, we conclude that the probability for
u being an efficient (ρ, d) asynchronous connector is at
least ( τ

8d

)4d

·
(

1
2d

)4d

=
( τ

16d2

)4d

.

6.2 Proof of Lemma 3.2 We start with the first
condition which says that there may not be any internal
edge in ∪λi=1Xi. To this end, consider all nodes in X.
For a node x ∈ X, let Zx = 1 if x has no edge in X,
and 0 otherwise. Note that for sufficiently large n

Pr [Zx = 1 ] =
∏

x′∈X\{x}

(
1− wxwx′

W[n]

)
(wxwx′ bounded)

> e−2wx .

Let Z :=
∑
x∈X Zx. To apply the second moment

method, first note that

Var [Z ] =
∑
x∈X

Var [Zx ]

+
∑
x6=x′

Pr[Zx = 1 ∧ Zx′ = 1]− Pr[Zx = 1] Pr[Zx′ = 1].

Note that each term in the sum above equals

Pr[Zx = 1] (Pr[Zx′ = 1 | Zx = 1]− Pr[Zx′ = 1]) .

The last term can be estimated by∏
y∈X\{x′,x}

(
1− wywx′

W[n]

)
−

∏
y∈X\{x′}

(
1− wywx′

W[n]

)
(
wxwx′

W[n]

)
·

∏
y∈X\{x′,x}

(
1− wywx′

W[n]

)
.

Since wx and wx′ are bounded, by putting everything
together we infer that

Var [Z ] 6 E [Z] +O(1) · |X|
2

W[n]
= O(E [Z]).

Using Chebyshev’s inequality we infer for sufficiently
large n with room to spare that

Pr [ |Z − E [Z] | > E [Z] /2 ] 6 n−1/2,

Set X̃ = {x ∈ X : Zx = 1} and let us now address the
second and third condition of the lemma. Define the set
X>i := {x ∈ X̃ : x is a (αλ−i, d)-efficient connector},
where 1 6 i 6 λ. By Lemma 3.1, where we set d = 2,

E [X>i] > |X̃| ·
(
αλ−i

64

)8

.

Since i 6 λ = O(log log log n), the expectation above
is bounded from below by some polynomial in n. By
applying the Chernoff bounds, it follows that

Pr

[
X>i >

1
2
|X̃| ·

(
αλ−i

64

)8
]

> 1− n−ω(1).

Taking the union bound, this holds for all 1 6 i 6 λ with
probability at least 1−n−ω(1). To simplify notation, let
us write for brevity c′ = (1/2) · (64)−8 and σ = α8 < 1.

We now define the sets Xi recursively. We begin
with X0 and put c′n · (1 − σ) · σλ elements of X>0

into the set X0. Similarly, we put c′n · (1 − σ) · σλ−1

elements of X>1\X0 into the set X1 and so on. We now
prove by induction that this recursive definition works.
So assume that we have completed the construction
of X0, X1, . . . , Xk where |Xi| = c′n · (1 − σ) · σλ−i for
every 0 6 i 6 k. Then,

|X>k| −
k−1∑
i=0

|Xi| > c′n · σλ−k −
k−1∑
i=0

c′n · (1− σ) · σλ−i

> c′n · σλ−k − c′n · (1− σ) · σλ−(k−1)
∞∑
i=0

σi

= c′n · σλ−k · (1− σ).

Hence we can put c′n · σλ−k · (1− σ) elements from the
set X>k \ ∪k−1

i=0 Xi to the set Xk. This completes the
induction and the proof of the lemma.

6.3 Proof of Lemma 3.3 Our first crucial step to-
wards the proof of Lemma 3.3 is the following state-
ment, which asserts that H contains a Norros-Reittu
graph, where all edges appear independently.

Lemma 6.1. Assume that (w′(u))u∈VH =
(T−β+2

0 (log T0)−9 wu)u∈VH . Then there is a cou-
pling such that with high probability NR(w′) ⊆ H.

Proof. Let v ∈ X0. By our construction, see Lemma 3.2,
v is a ((log T0)−1, 2)-efficient connector, and has no
neighbors in X. Moreover, |X0| = Ω(n(log T0)−8) =
Ω(n(log log n)−8). Finally, the choice of X0 is guaran-
teed to be independent of all edges that have at most
one endpoint in X.

Before we construct the coupling, our first objective
is to estimate the probable number of edges in H. Let
us begin with bounding from below the probability pv
that v has exactly two neighbors in VH , and no other
neighbor in [n]\X. Let x, x′, y, y′ ∈ VH , not necessarily
all distinct. Note that the events that N(v) = {x, y}
and N(v) = {x′, y′} are disjoint if {x, y} 6= {x′, y′}.
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Hence

pv =
∑

{x,y}∈(VH2 )
pv(x, y), where

pv(x, y) =
Pr[N(v) ∩ VH = {x, y} ∧N(v) ∩ ([n] \ (VH ∪X)) = ∅].

(6.6)

Note that pv(x, y) is the probability that the neighbors
of v are x, y. To estimate the above expression, first
note that for any u ∈ [n] we have that wvwu = o(n)
and therefore for sufficiently large n we may infer that

Pr[N(v) ∩ ([n] \ (VH ∪X)) = ∅] >∏
u∈[n]

(
1− wvwu

W[n]

)
> e−2wv .

(6.7)

As wv 6 2γ2 = Θ(1), we infer that there is a c1 > 0
such that for all v

(6.8) Pr[N(v) ∩ ([n] \X) = ∅] > c1.

We next estimate Pr[N(v) ∩ VH = {x, y}]. As different
pairs appear independently as edges, we have that

Pr[N(v) ∩ VH = {x, y}]

=
wxwyw

2
v

W 2
[n]

∏
z∈VH ,z 6=x,y

(
1− wvwz

W[n]

)

>
wxwyw

2
v

W 2
[n]

·

(
1− wv

W[n]

∑
z∈VH

wz

)
.

Lemma 4.1, applied to the last sum, implies that its
value is in Θ(nT−β+2

0 ). So, the expression in the
brackets is 1 − o(1) > 1

2 , whenever n is large enough.
By plugging this together with (6.8) into (6.6) we infer
that

pv(x, y) >
1
2
c1 w

2
v

wxwy
W 2

[n]

=⇒ pv >
1
4
c1

w2
v

W 2
[n]

(
W 2
VH −

∑
u∈VH

w2
u

)
.

(6.9)

By applying Lemma 4.1 twice and using the fact that
the maximum weight of a vertex in the kernel is 6 nα(n),
where α(n) 6 1

β−1 , we obtain the bounds

W 2
VH = Θ(n2T−2β+4

0 )
and∑

u∈VH

w2
u = O(n · n(3−β)/(β−1)) = o(n2T−2β+4

0 ).
(6.10)

Hence, W 2
VH
−
∑
u∈VH w

2
u = (1− o(1))W 2

VH
, and there-

fore, if n is large enough there is a c2 > 0 such that

(6.11) pv > c2 w
2
v

W 2
VH

W 2
[n]

.

As it will be needed later, we also can obtain similarly
an upper bound on pv. To achieve this, we estimate the
probability for the event “N(v) ∩ ([n] \ X) = ∅” from
above by 1:

pv 6
∑

{x,y}∈(VH2 )
Pr[N(v) ∩ VH = {x, y}]

6 w2
v

W 2
VH
−
∑
u∈VH w

2
u

W 2
[n]

.

(6.12)

With the estimates (6.11) and (6.10) at hand, we can
obtain a lower bound for the number of edges eH in
H that holds with high probability. Indeed, let m =∑
v∈X0

pv. By using (6.10) we infer that there is a
constant c3 > 0 such that

E [eH ] = m > c2
W 2
VH

W 2
[n]

·
∑
v∈X0

w2
v

(wv=Θ(1))

> c3 T
−2β+4
0 |X0|.

We shall now show that eH is concentrated around
its mean by applying the second moment method. If
we denote by puv the probability that u, v ∈ X0 have
exactly two neighbors in VH and no neighbors otherwise,
then, as in (6.6)

puv =
∑

{x,y},{x′,y′}∈(VH2 )

Pr[N(v) ∩ VH = {x, y}] Pr[N(u) ∩ VH = {x′, y′}]
× Pr[N(v) ∩ ([n] \X) = N(u) ∩ ([n] \X) = ∅].

The last probability equals Pr[N(v) ∩ ([n] \ X) =
∅] Pr[N(u) ∩ ([n] \ X) = ∅](1 − wuwv

W[n]
), and so, by

using (6.6), puv = (1 + o(1))pupv. A straightforward
application of Chebyshev’s inequality, together with the
fact |X0| = Ω(n(log log n)−8) then implies that with
high probability eH > m/2 > c4T

−2β+4
0 |X0|, where

c4 = c3/2.
We now are ready to construct the sought coupling.

To do so, we will define a sequence of (simple) couplings,
whose concatenation will yield the desired result. We
begin with defining an auxiliary multigraph H ′ such
that H ′ ⊆ H with probability one (where, as usual,
containment is defined by replacing multi-edges by
edges). Let C ⊆ X0 be the set of efficient connectors,
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that have exaxtly two neighbors in VH , and no other
neighbors. Let v ∈ C. Note that eH = |C|. We estimate
the probability that v is joined to x, y in VH . Note that
by (6.9) and (6.12), if we abbreviate W (2)

VH
=
∑
u∈VH w

2
u,

then we find a c5 > 0 such that

Pr[N(v) ∩ VH = {x, y} | v ∈ C] = pv(x, y) · p−1
v

> 2c5 w2
v

wxwy
W 2

[n]

(
w2
v

W 2
VH
−W (2)

VH

W 2
[n]

)−1

= 2c5
wxwy

W 2
VH
−W (2)

VH

=: pxy.

As this probability is independent of v, we define H ′

as follows. We start with an initially empty graph on
vertex set VH . Then we repeat |C| times independently:
with probability pxy add the edge xy, and otherwise,
with the remaining probability 1 − c5, skip this step.
With this definition we obviously always have H ′ ⊆ H.

In the second step, we construct another auxiliary
graph H ′′ by getting rid of the “idle” steps in the
construction of H ′. The expected number of edges
in H ′ is c5|C| = c5 eH . Thus, by applying the Chernoff
bounds, and using the fact that eH > c4 T

−2β+4
0 |X0|

with high probability, we infer that there is an a c6 > 0
such that with high probability the number of edges
in H ′ is at least c6 T

−2β+4
0 |X0| =: `H′ . We construct H ′′

by adding independently `H′ edges to an initially empty
graph with vertex set VH , such that in each step the
edge xy is added with probability

p′xy =
pxy∑

x′,y′∈VH ,x′ 6=y′ px′y′
=

2wxwy
W 2
VH
−W (2)

VH

.

It follows that there is a coupling such that H ′′ ⊆ H ′

with high probability, as p′xy equals the probability
that the edge xy is included in H ′ in a specific step,
conditional on the event that an edge is added in this
specific step.

Finally, we couple H ′′ to NR(w′(n)) such that
NR(w′(n)) ⊆ H ′′ with high probability. Note that

W ′ :=
∑
x∈VH

w′x = T−β+2
0 (log T0)−9

∑
x∈VH

wx.

By applying Lemma 4.1 we infer that the last sum
is O(nT−β+2

0 ). Hence, as |X0| = Ω(n(log T0)−8), for
sufficiently large n it follows that W ′ 6 `H′

2 . The
probability space of the coupling is

Ω =
∏

{x,y}∈(VH2 )
Ωxy,

where Ωxy is a Poisson process (or a Poisson clock) with
intensity (2w′x(n))(2w′y(n))/2W ′. We start with two

initially empty graphs G1, G2, and we will show that
in the end G1 ∼ NR(w′) and with high probability
G2 ∼ H ′′ and G1 ⊆ G2.

We construct the graphs as follows. Suppose that
we observe a tick at time t < 1/2 originating from the
clock xy. Then we add xy to both graphs. Moreover,
unless the total number of ticks observed up to t = 1/2
is more than `H′ , we continue adding edges at the
subsequent ticks to G2 until exactly `H′ were added.

We argue that indeed G1 ∼ NR(w′). Note that an
edge xy ∈ G1 iff the corresponding Poisson clock ticked
before 1/2, independently of all other edges. So,

Pr[xy ∈ G1] = Pr
[
Exp

(
2W ′

(2w′x)(2w′y)

)
< 1/2

]
= 1− e−w

′
xw
′
y/W

′
.

So, G1 ∼ NR(w′). To see that G1 ⊆ G2 holds with high
probability, note that the expected number of edges in
G1 is∑
x,y∈(VH2 )

1− e−w
′
xw
′
y/W

′
6

∑
x,y∈(VH2 )

w′xw
′
y

W ′
6 W ′ 6

`H′

2
.

A straightforward application of the Chernoff bounds
then guarantees that with high probability the number
of edges in G1 is less than`H′ . It remains to check that
under this condition G2 ∼ H ′′. Note that the property
that the exponential distribution is memoryless guaran-
tees that the probability that the edge x, y is added at
the point in time where some edge is added is indepen-
dent of all other ticks and equals

Pr

[
Exp

( 2W ′

(2w′x)(2w′y)

)
= min
{x′,y′}∈(VH2 )

{
Exp

( 2W ′

(2w′x′)(2w
′
y′)

)}]

=
w′xw

′
y∑

{x′,y′}∈(VH2 ) w
′
x′w
′
y′

= p′x,y.

With the above result at hand we are ready to
prove Lemma 3.3.

Proof. [Proof of Lemma 3.3] By applying Lemma 6.1
to H, we infer that there is a coupling such that
with high probability NR(w′) ⊆ H, where w′ =
(T−β+2

0 (log T0)−9 wu)u∈VH . Thus, it is enough to show
the claim for NR(w′), as the considered property is not
violated if edges are added to the graph.

Let us write N = |VH | 6 n. Recall that T0 =
(log n)A, where A = 3(3 − β)−2. This implies for
sufficiently large n that the smallest weight in w′ is at
least

T−β+2
0 (log T0)−9 · T0 > T 3−β

0 (log T0)−9

> (log n)2/(3−β) > (logN)2/(3−β).
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So, the sequence of weights w′(N) follows a (trun-
cated) power law with minimum weight (logN)2/(3−β).
By applying Theorem 9.24 from [29] we infer that
the diameter of NR(w′) is bounded from above by

2+o(1)
| log(β−2)| log log n, which completes the proof.

6.4 Connecting vertices of high weight through
efficient connectors – Proof of Lemma 3.4 Ap-
plying Lemma 3.2 we obtain a sequence of sets
X1, X2, . . . , Xλ ⊆ X, such that each Xi contains at least
c α8(λ−i) n nodes, each u ∈ Xi is a (αλ−i, 2)-efficient
connector, and Xi has no edge to any other node in X.

Let i > 1 and suppose that we have found sets
(S̃j)j6i−1 with the desired properties, where addition-
ally the efficient connectors joining vertices in S̃j−1 to S̃j
are only from Xj . We will show that there is a S̃i ⊆ Si
such that |S̃i| > |Si|/2, and every vertex in S̃i is con-
nected by an efficient connector x ∈ Xi to some vertex
in S̃i−1, and deg(x) = 2. To this end, define for u ∈ Si
the set,

Hu :=
{
x ∈ Xi : deg(x) = 2 ∧ x ∈ N(u) ∩N(S̃i−1)

}
,

where N(R) denotes the neighborhood of R. Let us first
compute the probability that a fixed node x ∈ Xi is in
Hu. Note that

Pr [x ∈ Hu ] >

wuwx
W[n]

·
∑

y∈S̃i−1

wxwy
W[n]

·
∏

r∈[n]\({u,y}∪X)

(
1− wxwr

W[n]

)
(wx=Θ(1))

>
w2
x

W 2
[n]

· e−2wx · wu ·WS̃i−1
.

(6.13)

In order to get an estimate for the above expression,
note that all z ∈ Si−1 satisfy Ti−1 6 wz < Ti−2. Hence,
WS̃i−1

is at least the sum of the weights of the |Si−1|/2
nodes with smallest weights in Si−1. Our assumption
that (Fn)n>1 is of power law type β guarantees that
there is a γ > 0 such that

|Si−1| = n((1− Fn(Ti−1))− (1− Fn(Ti−2)))

> γ T−β+1
i−1 n.

As the minimal weight in Si−1 is Ti−1, we readily infer
that WS̃i−1

> γ T−β+2
i−1 n. Let us now compute the

expected size of Hu. As for any x ∈ Xi it holds that
wx = Θ(1), Equation (6.13) implies that there is a
γ′ > 0 such that

E [|Hu|] >
∑
x∈Xi

w2
x

W 2
[n]

· e−2wx · wu · γ T−β+2
i−1 n

> γ′ · |Xi|
n

wu T
−β+2
i−1 .

Using that |Xi| > cα8(λ−i) · n, and wu > Ti = Tα
i

0 we
infer that there is a γ′′ > 0 such that

E [|Hu|] > γ′′α8(λ−i)T
αi−1(−β+2)
0 · Tα

i

0

(α=2(β−2)/(β−1))
= γ′′ α8(λ−i) T

(3−β)/2
i .

Easy calculus proves there is a constant κ1 > 0 such that
for all i 6 λ − κ1 the above expression is decreasing in
i and lower bounded by T (3−β)/4

i .
Since |Hu| is a binomial random variable (recall

that by definition, there are no internal edges between
vertices in Xi), it follows by a Chernoff bound that

Pr [ |Hu| = 0 ] 6 Pr
[
|Hu| 6

1
2

E [|Hu|]
]

6 exp(−E [|Hu|] /8) 6 exp(−T (3−β)/4
i /8).

Now define

S̃i := {u ∈ Si : |Hu| > 0} .

Hence E
[
|Si \ S̃i|

]
6 |Si| · exp(−T (3−β)/4

i /8), and
Markov’s inequality yields

Pr
[
|Si \ S̃i| > exp(−T (3−β)/4

i /16) · |Si|
]

6 exp(−T (3−β)/4
i /16).

Let κ2 be such that for all i 6 λ − κ2 we have
that exp(−T (3−β)/4

i /16) 6 1/2. Now choose the con-
stant κ in the conclusion of the lemma large enough, in
particular, at least as large as max{κ1, κ2}, so that we
also have

λ−κ∑
i=0

exp(−T (3−β)/4
i /16) 6 ε.

holds. With this choice, the statement of the lemma
follows since the probability that any of the constructed
sets S̃i, where i 6 λ − κ, fails to satisfy the desired
properties is bounded by ε.

6.5 Passing the information to the periphery
– Proof of Lemma 3.5 To prove Lemma 3.5, we
need to focus on the local structure of CL[R], where
R := [n] \ {S ∪X}. In particular, we will focus on the
subgraph of it that is induced by the vertices that have
degree bounded by some constant, which we will specify
during our proof. In particular, bounding the total
number of vertices that lie within a certain distance
from vertices of high degree will show that for most of
the vertices in R their neighbourhoods consist of small
degree vertices. Being more precise, we first show the
following lemma.
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Lemma 6.2. Fix D > 0. Let G = (V,E) be a graph so
that for all 0 6 x 6 D,

(6.14) γ1x
−β+1 6

1
n

n∑
i=1

1[deg(i) > x] 6 γ2x
−β+1,

where 0 < γ′1 6 γ′2 are constants. Define N0(D) := {u ∈
V : deg(u) > D} and Ni(D) := N(Ni−1(D)). Then

|Ni(D)| 6 c · n · (D)(1−β)·( β−2
β−1 )i ,

where c > 0 is a constant independent of D and i.

Proof. Using the same arguments as in Lemma 4.1 (the
only difference is that we work with degrees instead of
weights), we obtain that

vol(N0(D)) =
∑

i : deg(i)>D

deg(i) 6 cnD−β+2,

where c > 0 is a constant. Hence, |N1(D)| 6
vol(N0(D)) 6 cnD−β+2. More generally, let si :=
|Ni(D)|. Since |Ni+1(D)| 6 vol(Ni(D)), we want to
find a value `i so that

n∑
j=1

1[deg(j) > `i] > si.

Using Lemma 6.2, we find that `i := c̃(n/si)1/(β−1),
where c̃ > 0 is a constant, satisfies the above inequality.
Hence,

si+1 := Ni+1(D) 6 vol(Ni(D))

=
n∑
j=1

1[deg(j) > `i] deg(j) 6 c · n · `−β+2
i

6 c · n ·
(
n

si

)(−β+2)/(β−1)

= c̃n1/(β−1)s
(β−2)/(β−1)
i ,

where c is a constant independent of D and i. Now
define ai := si/n and N := (β − 2)/(β − 1) ∈ (0, 1).
Then,

ai+1 6 c · aNi .

Solving this recursion yields

ai 6 c̃1/(1−N) · aN
i

1 ,

which implies the lemma.

Recall that by Theorem 4.1 CL(w) satisfies 6.14 with
probability 1 − o(1). Also, N = nFn(C) − dεne.
Therefore we obtain the following corollary.

Lemma 6.3. For any real δ > 0 and any positive integer
r, there exists a positive integer D = D(δ, r) such that
with probability 1 − o(1) there are at most δN vertices
in CL(w) which lie within distance r from the set of
vertices that have degree larger than D.

The next step in our proof has to do with structure of
CL[R]. Firstly, we will show that with high probability
CL[R] has a unique giant component, which essentially
is almost all of the giant component of CL(w). There-
after, we apply the above lemma in order to deduce
that most of the vertices of the giant component do not
have any vertices of degree larger than D (in R) within
distance r, where D and r will be specified during the
proof. In other words, for most of the vertices of the
giant component of CL[R] their balls of radius r consist
of bounded degree vertices. These balls contain at least
r vertices. Thereafter, we show that most of these balls
consist of vertices that have a small number of edges to
S and also have at least one edge to S̃. This edge con-
nects the centre of the ball to S̃ through a path where
every internal vertex has bounded degree. As we shall
see, such a path is able to “communicate” the informa-
tion between its endpoints in a small number of rounds.
Of course, we need to bound the degree of the vertices
of R to the set X. But we do separately at the end of
this section, as here we will be conditioning on a certain
realisation of the set S̃ as this is specified in Lemma 3.4,
and this requires the exposure of the edges between X
and R. We now proceed with the detailed exposition of
these steps.

6.5.1 CL[R] as an inhomogeneous random
graph We will express CL[R] in the framework of in-
homogeneous random graphs, as this will be essential
at various steps during our proof. Now, for distinct
i, j ∈ R, the probability of the edge {i, j} being present
is equal to

pij(w) =
wiwj
Wn(w)

.

Note that all vertices in R have weight at most C :=
T imax0 and note that this can become as large as we need.
Set N := |R| and recall that N = nFn(C) − dεne. For
future use, let us set right now ε′ := dεne/n. Also, recall
that Wn is the random variable which is the weight
of a randomly chosen vertex from [n]. Then we write
Wn(w)/n = E[Wn ] and, in turn, the above probability
can by written as

pij(w) =
Fn(C)− ε′

N

wiwj
E[Wn ]

.

We consider the points i/N ∈ (0, 1], for all i ∈ [N ]. For
every i ∈ [n] we set wi = [Fn]−1(i/n), where [Fn]−1 is
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the generalised inverse of the function Fn(x) and it is
defined as [Fn]−1(u) := sup{s : Fn(s) 6 u}, for all
u ∈ (0, 1].

We define the kernel function κn,R(x, y) for (x, y) ∈
(0, 1]2 to be

κn,R(x, y) = (Fn(C)− ε′) ψn(x) · ψn(y)
E[Wn ]

,

where ψn(x) = [Fn]−1(ε′ + x(Fn(C) − ε′)). Therefore,
sinceN = n(Fn(C)−ε′), we have ψn(i/N) = [Fn]−1(ε′+
i/n). We will be assuming throughout this section that
C is a point of continuity of F - this assumption excludes
only countably many choices for C.

Note that this sequence of functions has a limit κR
which is a real-valued function on (0, 1]2. This is

κR(x, y) = (F (C)− ε) ψ(x) · ψ(y)
E[WF ]

,

where ψ(x) = [F ]−1(ε + x(F (C) − ε)) and WF is a
real-valued random variable whose distribution is F .
This is a pointwise limit of the sequence {κn,R}n∈N on
the points (x, y) of continuity of [F ]−1(ε + x(F (C) −
ε)) · [F ]−1(ε + y(F (C) − ε)), that is, for almost every
(x, y) ∈ (0, 1]2.

We need to verify a number of conditions regarding
the functions κn,R as well as the limiting function κ.
Namely, we need to verify that {κn,R}n∈N is a graphical
sequence with limit κR (see [29] Def. 9.2 p. 202). We
have already shown that κ is the pointwise limit of
the sequence {κn,R}n∈N. We also need to verify the
following properties:

i. κR is continuous almost everywhere - this follows
from the definition of κR;

ii.
∫

[0,1]2
κR(x, y)dxdy < ∞ - this follows as ψ(x) =

[F ]−1(ε+ x(F (C)− ε)) 6 C for all x ∈ (0, 1];

iii. if e(R) denotes the number of edges of CL[R], then
we have

lim
N→∞

1
N

E[ e(R) ] =
1
2

∫
(0,1]2

κR(x, y)dxdy.

To see this, we write:

E[ e(R) ] =
1
2

∑
i 6=j∈[N ]

κn,R(i/N, j/N)
N

= N

(
1
2

∫
(0,1]2

κn,R(x, y)dxdy

− 1
N

(F (C)− ε)
E[Wn ]

∫
(0,1]

ψ(x)2dx

)
.

But the functions κn,R(x, y) are uniformly bounded
and furthermore their sequence converges point-
wise almost everywhere to κR, which is integrable.
Thus, by the Bounded Convergence Theorem, the
first integral converges to

∫
[0,1]2

κR(x, y)dxdy, while
the second term is vanishing as N →∞.

It is also clear that κR is irreducible, that is, there
exists no subset A ⊂ [0, 1] of positive Lebesque measure
for which κR = 0 almost everywhere in A × ([0, 1] \
A). The above properties are minimal assumptions on
the asymptotic behaviour of kernel sequences usually
required in the theory of inhomogeneous random graphs
(see e.g. [3] or [29]).

6.5.2 CL[R] and its giant component We now
show that CL[R] itself has a giant component with
high probability. We will use the standard theory of
inhomogeneous random graphs to show that, with high
probability, CL[R] in fact has a unique component
whose number of vertices is a certain fraction of the
vertices of R, whereas every other component has at
most logarithmic size.

Since the sequence {κn,R}n∈N is graphical with limit
κP , which is irreducible, by Theorem 3.1 in [3], it suffices
to show the following.

Lemma 6.4. The norm of the linear operator TκR :
L2((0, 1])→ L2((0, 1]) defined as

(TκRf)(x) =
∫

(0,1]

κR(x, y)f(y)dy,

is strictly larger than 1. (Here and below integration is
meant to be Lebesque integration.)

Proof. To show this, it is enough to show that there
exists a real-valued function f on (0, 1] whose L2-norm
is equal to 1 and TκRf has L2-norm strictly larger than
1. We set f(x) := ψ(x)/ ‖ψ‖2. Thus, for any x ∈ (0, 1]
we have

(TκRf)(x) =
1
‖ψ‖2

∫
(0,1]

κR(x, y)ψ(y)dy =

(F (C)− ε)ψ(x)
‖ψ‖2 E [WF ]

∫
(0,1]

ψ2(y)dy.
(6.15)

But∫
(0,1]

ψ2(y)dy =
∫

(0,1]

(
[F ]−1(ε+ y(F (C)− ε))

)2
dy

=
1

(F (C)− ε)

∫
(ε,F (C)]

(
[F ]−1(y)

)2
dy

=
1

(F (C)− ε)

∫
(0,1)

(
[F ]−1(y)

)2
1{ε<y6F (C)}dy.
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But recall that almost everywhere(
[Fn]−1(y)

)2
1{ε′<y6Fn(C)} →

(
[F ]−1(y)

)2
1{ε<y6F (C)}

as n→∞. As the functions
(
[Fn]−1(y)

)2
1{ε′<y6Fn(C)}

are uniformly bounded by C2, the Bounded Conver-
gence Theorem implies that

lim
n→∞

∫
(0,1]

(
[Fn]−1(y)

)2
1{ε′<y6Fn(C)}dy

=
∫

(0,1]

(
[F ]−1(y)

)2
1{ε<y6F (C)}dy.

To bound the maximum weight in X we define as
cX := sup{s > 0 : Fn(s) 6 ε}. Thus for any s in this
set we have 1−Fn(s) > 1−ε. Also, γ2s

−β+1 > 1−Fn(s).
These two inequalities yield

(6.16) s 6

(
γ2

1− ε

) 1
β−1

⇒ cX 6

(
γ2

1− ε

) 1
β−1

.

So for all n∫
(0,1]

(
[Fn]−1(y)

)2
1{ε′<y6Fn(C)}dy

>
1
n

∑
i : ( γ2

1−ε )
1

β−1 6wi6C

w2
i = Θ(C3−β),

by Lemma 4.1. Thus, if n and C are large enough, we
have

F (C)− ε
E[WF ]

∫
(0,1]

ψ2(y)dy > 1

and (6.15) implies that the L2-norm of TκRf is strictly
greater than 1.

Thus, Theorem 3.1 in [3] implies the existence of a
giant component in CL[R]. If C1(R) denotes the
(lexicographically first) largest component in CL[R] and
|C1(R)| its number of vertices, we have the following.

Corollary 6.1. There exists a constant ζR ∈ (0, 1)
such that

|C1(R)|
N

→ ζR,

in probability as n → ∞, whereas every other compo-
nent contains O(log n) vertices.

6.5.3 Balls of bounded degree vertices Taking
δ = εζR/4 in Lemma 6.3 and letting r be sufficiently
large (we will specify this later) we obtain a D = D(ε, r)
such that with probability 1−o(1) there are at most δN
vertices in CL(w) and, therefore in CL[R] as well, which
lie within distance r from the set of vertices that have

degree larger than D. Thus, for all but at most δN of
the vertices of C1(R), the ball of radius r around each
such vertex contains only vertices of degree at most D
in R. For a vertex v, we denote by Br(v) the ball of
radius r around v.

Therefore, we obtain the following lemma.

Lemma 6.5. For every ε > 0 and every positive inte-
ger r there exists a positive integer D such that with
probability 1− o(1), all but at most ε|C1(R)|/2 vertices
of C1(R) are such that for every such vertex v we have
|Br(v)| > r.

We will denote this subset of vertices of V (C1(R)) by
GR.

6.5.4 Thin paths between C1(R) and S̃ Here, we
will argue that most of the vertices of GR are such
that the ball around each of them does not have many
neighbors in S and at least one vertex there is adjacent
to S̃.

We call a vertex v ∈ GR efficient if each vertex
u ∈ Br(v) has degree at most ∆̂ in S and there is
a vertex in Br(v) that has at least 1 neighbor in S̃.
Moreover, we associate each vertex in GR with an
indicator random variable Iv which is equal to 1 if and
only if v is efficient. In the sequel we show that the
probability that Iv is equal to 1 is close to 1. Thereafter,
we will show that indeed with high probability the sum
of these indicators is very close to |C1(R)|. We will do
this by means of Markov’s inequality.

Let v be a vertex of GR. We will bound from
below Pr [ Iv = 1 ]. We first bound the probability that a
vertex u ∈ Br(v) has at least ∆̂ neighbours in S. To this
end, we need to bound the weight of S. As S consists of
all vertices that have weight at least C, by Lemma 4.1
we have

W[S] = O
(
nC−β+2

)
.

Therefore,

E [degS(u)] = O
(
wuC

−β+2
)

= O
(
C3−β) .

Thus, by Markov’s inequality

Pr
[

degS(u) > ∆̂
]

= O

(
C3−β

∆̂

)
.

As |Br(v)| 6 Dr, we make ∆̂ large enough, we obtain

(6.17) Pr
[
∃ u ∈ Br(v) : degS(u) > ∆̂

]
6 ε2/8.

Finally, we will bound from above the probability that
u has no neighbours in S̃. The probability that this is
not adjacent to S̃ is:∏

i∈S̃

(
1− wuwi

W[n]

)
6 exp

(
−wu

W[S̃]

W[n]

)
.(6.18)
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We now need to bound W[S̃] from below. Recall that
S̃ contains at least half of the vertices in S. Thus, to
bound its total weight from below it is enough to bound
from above the total weight of the d 1

2 |S|e vertices of
highest weight in [n]. We do so in the proof of the
following claim.

Claim 6.1. We have

W[S̃] > W[S]

(
1−O

((
γ1

γ2

) β−2
β−1
))

.

Proof. Recall that |S| > nγ1C
−β+1. This means that it

is enough to bound from above the total weight of the
dn2 γ2C

−β+1e nodes of highest weight. Assuming that
the weight of these vertices is bounded from below by
C ′, we will determine the largest such C ′. For this, we
again use the assumption that γ1C

′−β+1 6 1− Fn(C ′),
this time having

n(1− Fn(C ′)) = dn
2
γ2C

−β+1e 6 nγ2C
−β+1.

Thus, we obtain:

C ′ >

(
γ1

γ2

) 1
β−1

C.

But by Lemma 4.1, all vertices that have weight at least

C ′ have total weight Θ
(
n
(
γ1
γ2

) β−2
β−1

C−β+2

)
.

Using the bound of this claim in (6.18) we deduce that
the probability that u is not adjacent to S̃ is at least
1−O(C−β+2). Therefore, since Br(v) contains at least
r vertices, the probability that none of its vertices is
adjacent to S̃ is at most (1 − O(C−β+2))r 6 ε2/8,
provided that r is chosen large enough compared to C.
This together with (6.17) imply that

Pr [ Iv = 0 ] 6 ε2/2.

Therefore the expected number of vertices of GR that
are not efficient is at most ε2|GR|/4 6 ε2|C1(R)|/4
and Markov’s inequality implies that with probability
at least 1 − ε/2 there are at most ε|C1(R)|/2 of them.
To sum up, together with Lemma 6.5 we have arrived
at the following fact.

Lemma 6.6. For every ε > 0 if C is sufficiently large,
then there exist integers r, ∆̂ such that, with probability
at least 1− ε/2, at least (1− ε/2)|C1(R)| of the vertices
in C1(R) are such that there is a path emanating from
each of them to S̃ of length at most r whose internal
vertices have degree at most ∆̂ to S.

Lemma 6.6 almost completes the proof of Lemma 3.5.
We finally need to argue about the vertices that belong
to small components of CL[R].

Outside the giant component of CL[R] We will
show that we can effectively ignore the vertices that
lie outside the giant component. Let us assume that we
have a C as in Lemma 6.6, which we can make as large
as we please. We prove the following lemma.

Lemma 6.7. For every ε > 0 and for any C large
enough (depending on ε), with probability at least 1− ε
at most εn vertices that do not belong to C1(R) belong
to components directly connected to S.

Proof. We will distinguish the remaining components of
CL[R] (that is, all components apart from the largest
one) into three classes. Let C1 be the subset of these
components that contain at most C(β−2)/6 vertices all
of them having weight less than C(β−2)/6. We also let
C2 be the subset of components that also contain at
most C(β−2)/6 vertices but contain at least one vertex
of weight at least C(β−2)/6. Finally, let C3 be the
remaining components (of course, apart from the largest
one). We will argue about each one of these subsets
separately.

Regarding C1, we will show that most of the compo-
nents contained there are not connected to S. Indeed,
let us consider a component B ∈ C1. The probability
that none of its vertices is adjacent to S is at least∏

v∈V (B)

(
1−

wvW[S]

W[n]

)
> 1−

W[S]

W[n]

∑
v∈V (B)

wv

> 1−
W[S]

W[n]
C

2(β−2)
6 = 1−Θ

(
C−

2(β−2)
3

)
,

using Lemma 4.1. Let us set ε2
1 to be the above error

term multiplies by the bound on the number of vertices
in each component of C1, that is, ε2

1 = Θ
(
C−

(β−2)
2

)
.

Thus, the expected number of vertices of CL[R] which
belong to components in C1 that are connected to S is
at most ε2

1|C1| 6 ε2
1n. Thus, using Markov’s inequality

we deduce that with probability at least 1−ε1 there are
at most ε1n vertices contained in such components.

For C2, we will simply show that |C2| itself is
small. As C2 consists of components that contain at
least one vertex of weight at least C(β−2)/6, the size
of C2 is at most the number of vertices of weight at
least C(β−2)/6. But the number of these vertices is
n(1−Fn(C(β−2)/6)) = O(nC

(β−2)(1−β)
6 ). Thus, for every

ε2 > 0, there exists C large enough such that the total
number of vertices in components that belong to C2 is
at most ε2n, for any n large enough.

Now, regarding C3, we will use more precise bounds
on the counts of components of size at least C(β−2)/6

from the theory of inhomogeneous random graphs as
developed in [3]. In Lemma 6.4, we proved that
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CL[R] is supercritical and therefore it has a unique
giant component of linear order, whereas every other
component has O(log n) vertices. By Theorem 12.3
in [3], since κ is bounded by C, the distribution of the
random graph induced by these components is that of
an inhomogeneous random graph on [N ] with a certain
limiting kernel κ̂R on (0, 1]2 equipped with a certain
measure such that ‖Tκ̂R‖ < 1. For this random graph,
(12.1) and (12.2) in [3] imply that the probability that
a certain vertex belongs to a component with at least
C(β−2)/6 vertices but not in the largest one is at most
e−aC

(β−2)/6
, for some constant a, which does not depend

on C. Therefore, the expected number of such vertices is
at most Ne−aC

(β−2)/6
. So, for every ε3 > 0 there exists

C large enough such that the expected number of such
vertices is at most ε2

3n. Markov’s inequality implies that
with probability at least 1− ε3, the number of vertices
belonging to components of order at least C

β−2
6 but not

in the largest one is at most ε3n.
These three cases complete the proof of the lemma,

setting ε := (ε1 + ε2 + ε3)1/2 and taking C sufficiently
large.

Finishing the proof of Lemma 3.5 In the above
argument, we have not dealt at all with the degrees of
the vertices in R to the set X. We did so, because in
the above analysis we assumed that we have exposed
the set S̃ which requires the exposure of the potential
edges between the sets X and R. To complete the proof
of Lemma 3.5, we consider these edges separately.

Lemma 6.8. For any ε > 0 and C > 0, there exists
∆̃ such that with probability at least 1 − ε/2, there are
at most εζRN/4 vertices in R which have at least ∆̃
neighbours in X.

Proof. Firstly, we bound from below the probability
that u ∈ R has at least ∆̃ neighbours in X. To do
so, we first need to bound the total weight of X

Claim 6.2. With X being defined as the set of the εn
vertices of smallest weight in w, we have

W[X] 6 W[n] −O

(
n

(
1− ε
γ2

) β−2
β−1
)
.

Proof. Recall that the maximum weight in X is
bounded by cX as in (6.16). Thus, using Lemma 4.1

W[X] 6
∑

i:wi6( γ2
1−ε )

1
β−1

wi = W[n]−O

(
n

(
1− ε
γ2

) β−2
β−1
)
,

which concludes the proof of the claim.

The above claim immediately implies that the expected
degree of u in X, which we denote by degX(u) is at most

E [degX(u)] 6
wuW[X]

W[n]
= wu

(
1−O

((
1− ε
γ2

) β−2
β−1
))

6 C

(
1−O

((
1− ε
γ2

) β−2
β−1
))

.

Therefore, by Markov’s inequality

Pr
[

degX(u) > ∆̃
]

= O

(
C

∆̃

)
.

Thus making ∆̃ large enough, we deduce that

(6.19) Pr
[

degX(u) > ∆̃
]

6 ε2ζR/8.

Thus, the expected number of such vertices is at most
ε2ζRN/8. Applying Markov’s inequality, the probability
that there are at least εζRN/4 such vertices in R is at
most ε/2.

By Corollary 6.1, we deduce that for n large enough,
with probability at least 1 − ε, there are at most
ε|C1(R)|/2 vertices in C1(R) that have degree at least
∆̃ in X. Now, combining this lemma together with
Lemmas 6.6 and 6.7 and setting ∆ = ∆̂ + ∆̃, we finally
deduce Lemma 3.5.

7 Concluding remarks

The present work establishes for a class of random
graphs ultrafast time bounds on the running time of
the synchronous push-pull protocol that is needed until
the majority of the vertices are informed. This class
of random graphs has power law degree distribution
with exponent β ∈ (2, 3). On the other hand, we
show that when β exceeds 3, then the synchronous
version of the push-pull protocol needs logarithmic to
spread the rumor even on a relatively small part of
the underlying graph. Thus, the exponent β = 3 is
the critical point, such that when β crosses this value
we have an exponential speedup of the synchronous
push-pull protocol. We believe that this is a universal
phenomenon and ultrafast dissemination of the rumor
for both versions of the push-pull protocol occurs, when
the underlying graph is a random graph that has power
law degree distribution with exponent β ∈ (2, 3). In
a forthcoming paper, we establish this for preferential
attachment random graphs, proving that the statement
of Theorem 1.1 as well as that of Theorem 1.2 do also
hold in this case.
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